Synchronization of stochastic genetic oscillator networks with time delays and Markovian jumping parameters

نویسندگان

  • Yao Wang
  • Zidong Wang
  • Jinling Liang
  • Yurong Li
  • Min Du
چکیده

Genetic Oscillator networks (GONs) are inherently coupled complex systems where the nodes indicate the biochemicals and the couplings represent the biochemical interactions. This paper is concerned with the synchronization problem of a general class of stochastic GONs with time delays and Markovian jumping parameters, where the GONs are subject to both the stochastic disturbances and the Markovian parameter switching. The regulatory functions of the addressed GONs are described by the sector-like nonlinear functions. By applying up-to-date ‘delay-fractioning’ approach for achieving delay-dependent conditions, we construct novel matrix functional to derive the synchronization criteria for the GONs that are formulated in terms of linear matrix inequalities (LMIs). Note that LMIs are easily solvable by the Matlab toolbox. A simulation example is used to demonstrate the synchronization phenomena within biological organisms of a given GON and therefore shows the applicability of the obtained results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synchronization criteria for T-S fuzzy singular complex dynamical networks with Markovian jumping parameters and mixed time-varying delays using pinning control

In this paper, we are discuss about the issue of synchronization for singular complex dynamical networks with Markovian jumping parameters and additive time-varying delays through pinning control by Takagi-Sugeno (T-S) fuzzy theory.The complex dynamical systems consist of m nodes and the systems switch from one mode to another, a Markovian chain with glorious transition probabili...

متن کامل

Robust stability of fuzzy Markov type Cohen-Grossberg neural networks by delay decomposition approach

In this paper, we investigate the delay-dependent robust stability of fuzzy Cohen-Grossberg neural networks with Markovian jumping parameter and mixed time varying delays by delay decomposition method. A new Lyapunov-Krasovskii functional (LKF) is constructed by nonuniformly dividing discrete delay interval into multiple subinterval, and choosing proper functionals with different weighting matr...

متن کامل

Synchronization for Complex Dynamic Networks with State and Coupling Time-Delays

This paper is concerned with the problem of synchronization for complex dynamic networks with state and coupling time-delays. Therefore, larger class and more complicated complex dynamic networks can be considered for the synchronization problem. Based on the Lyapunov-Krasovskii functional, a delay-independent criterion is obtained and formulated in the form of linear matrix inequalities (LMIs)...

متن کامل

On Complex Artificial Higher Order Neural Networks: Dealing with Stochasticity, Jumps and Delays

AbstrAct This chapter deals with the analysis problem of the global exponential stability for a general class of stochastic artificial higher order neural networks with multiple mixed time delays and Markovian jumping parameters. The mixed time delays under consideration comprise both the discrete time-varying delays and the distributed time-delays. The main purpose of this chapter is to establ...

متن کامل

New Stability Criteria for a Class of Markovian Jumping Genetic Regulatory Networks with Time-varying Delays

This paper addresses the problem of stability analysis for a class of genetic regulatory networks (GRNs) with Markovian jumping parameters and time-varying delays. By constructing a novel Lyapunov-Krasovskii functional (LKF) and using an appropriate enlargement scheme, new stability criteria are proposed in terms of linear matrix inequalities, which can guarantee the mean square stability of Ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neurocomputing

دوره 73  شماره 

صفحات  -

تاریخ انتشار 2010